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Effectively managing stress is essential for enhancing one’s quality of life but requires a good 
understanding of one’s stress levels. Nonetheless, the diversity and dynamic nature of stress 
symptoms can complicate this endeavor. In this study, we explored the potential of leveraging 
facial information to develop technologies for stress assessment. A prospective multicenter 
study was conducted in Tokyo, Japan, from January 2018 to December 2021, enrolling 2343 
participants aged between 20 and 60 years. Participants completed a facial skin-related ques-
tionnaire, and their facial images and videos were collected for analysis. Stress levels were 
measured using both objective outcomes, including autonomic, blood, and urine markers, as 
well as subjective outcomes, such as fatigue scales and quality of life questionnaires. Various 
machine learning techniques were employed to create separate evaluation models to predict the 
5 categories of stress outcomes from the 3 sources of facial data. The criteria for model accuracy 
were set at >0.7. The models using facial image data emerged as the most accurate models for 
predicting various static stress states derived from questionnaires or from blood/urine biomark-
ers. Facial skin data from subjective questionnaires also accurately predicted static stress states. 
Facial video data accurately predicted dynamic stress states reflected by autonomic nervous 
system-based biomarkers such as the heart rate, coefficient of variation of R–R, and the ratio of 
the low- and high-frequency bands in heart rate variability. In this study, we developed several 
machine learning-based prediction models to assess static and dynamic stress levels using facial 
information, including images, videos, and questionnaires. The ease of capturing and analyzing 
facial data with readily available camera-equipped devices, such as smart devices and personal 
computers, makes this facial skin-based stress analysis promising for organizational health man-
agement and individual well-being. It enables early stress detection through self-assessment, 
exemplifying the application of cosmetics research knowledge to overall well-being.

Key words: well-being, stress management, machine learning, deep learning, stress evalua-
tion, smart device, biomarkers, facial information, organizational health management, facial 
skin-based stress analysis
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Intersection of Skin Analysis Technology and Well-being: Utilizing Facial Skin Data for Stress Prediction and Management

1. Introduction

The surge in mental health awareness, particularly accentuated by the COVID-19 pandemic, drives an increasing 
demand for enhanced mental well-being and quality of life. “Good Health and Well-being” is a target within “Sustain-
able Development Goal 3,” adopted by the World Health Organization in 2015, which calls upon countries to guarantee 
healthy lives and well-being for people of all ages.

To achieve this goal, a significant emphasis is placed on stress management, as stress can manifest in physical and 
mental health issues, impacting performance, emotional well-being, and skin conditions. Effective stress management 
is crucial but often challenging to implement. There are 2 primary challenges: (i) recognizing the need for self-care and 
(ii) having access to effective self-care methods that are easily accessible and yield noticeable results. The foremost 
challenge revolves around identifying one’s stress levels. When individuals are aware of their stress, they can more 
effectively tend to their well-being by incorporating rest and mental self-care into their routines. However, recognizing 
one’s stress state can be elusive, leading to a lack of awareness and subsequently neglecting self-care, which can result 
in various health problems. Stress symptoms vary widely among individuals, encompassing mental and physical fatigue, 
stress markers in the blood, or fluctuations in the autonomic nervous system. Some of these symptoms can change 
dynamically, such as shifts in the autonomic nervous system, making it challenging to gauge one’s stress level precisely. 
Therefore, there is a pressing need for a comprehensive and user-friendly stress monitoring technology.

In addressing this challenge, we sought to tap into the wealth of knowledge and expertise within the beauty and 
cosmetics industry, as numerous reports have highlighted potential connections between an individual’s stress levels 
or stress risk and the condition of their facial skin. Research indicates that the accumulation of psychological stress 
correlates with the worsening of skin conditions,1) a decline in the barrier function of stratum corneum cells,2) and an 
increase in skin saccharifying substances.3) The underlying in vivo mechanism suggests that mental stress can lead to an 
overproduction of glucocorticoids, ultimately resulting in a reduction in the stratum corneum’s barrier function.4) Fur-
thermore, studies investigating the relationship between stress levels and skin health have found that sleep deprivation 
can impair the barrier function of stratum corneum cells, reduce their resilience to damage, and diminish their anti-in-
flammatory properties.5,6)

Previously, we developed a technique that employed machine learning to infer an individual’s stress and fatigue levels 
based on the characteristics of their facial stratum corneum cells.7) This technology demonstrated the ability to accu-
rately identify individuals surpassing predefined thresholds for various subjective and physical fatigue states, achieving 
an accuracy rate exceeding 70%. Nevertheless, this technology necessitates the collection, staining, and microscopic 
analysis of stratum corneum cells, rendering it unsuitable for widespread public use.

In addition to microscopic alterations, prolonged exposure to mental and physical stress has induced noticeable mac-
roscopic changes in the skin, including the development of wrinkles and a reduction in skin thickness.8) Furthermore, 
insufficient sleep can also manifest in distinct macroscopic changes, such as the emergence of dark circles, wrinkles, 
and a sagging mouth.9) Based on these observations, we hypothesize the potential for evaluating various stress states 
through a reverse analysis of facial and skin characteristics. Leveraging the widespread adoption of devices with 
cameras, such as smartphones, tablets, and personal computers, we aimed to develop a user-friendly technology that 
utilizes machine learning methods to capture and analyze facial data, enabling stress level estimation that can be acces-
sible to everyone.

2. Materials and Methods

2.1. Study design
A prospective multicenter study was conducted in Tokyo, Japan, from January 2018 to December 2021. The study 

enrolled Japanese men and women aged between 20 and 60 years. Participants with serious cardiovascular, hepatic, 
renal, respiratory, endocrine, or metabolic disorders, or having a medical history of these disorders, or those taking 
pharmaceuticals that have the possibility of affecting the autonomic nervous system, or those deemed unsuitable by the 
investigator were excluded. Participants completed a questionnaire related to their facial skin, and facial images and 
videos were obtained using a smartphone for analysis. Stress levels were measured using objective outcomes, such as 
autonomic, blood, and urine markers, and subjective outcomes, such as fatigue scales and quality of life questionnaires. 
All studies were conducted after obtaining approval from the POLA Ethics Committee, and informed consent was 
obtained before participation in the research.
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2.2. Predictor variables
Three types of facial data, commonly used in cosmetics research, were used as predictors to develop the models for 

stress evaluation (Fig. 1).
2.2.1. Facial skin questionnaire
A 25-item questionnaire was administered to all participants in Japanese (Table 1, translated into English). Items that 

highly correlated with stress outcomes were chosen for inclusion in the regression models.
2.2.2. Facial photos
Photos were captured using a smartphone (iPhone 7) fixed to a pedestal approximately 30 cm away from the partici-

pant. High-resolution networks for facial landmark detection (HR nets),10) a method for detecting facial parts, were used 
to crop and extract images of the whole face and specific parts, including the eyes, cheeks, and mouth sites, from the 
facial image for use in the models.

2.2.3. Facial videos
The videos were acquired with a smartphone (iPhone 7) fixed to a pedestal. The filming duration was 1 minute. After 

removing the first 10 s, the next 30 s were cropped chronologically and used for further study.
2.3. Stress outcomes
Five stress measures served as outcomes in the study.
2.3.1. Subjective status
Subjective status was measured using (a) the Chalder Fatigue Scale,11) which is widely used to measure fatigue world-

wide, and (b) the Mental and Physical Fatigue Scales,12) which are the standards developed by a research group of the 
Japanese Ministry of Education, Culture, Sports, Science and Technology.

2.3.2. Quality of life status
Quality of life was measured using the Athens Insomnia Scale,13) Pittsburgh Sleep Quality Index,14) and the individu-

al’s frustration scale, scored using a 10-point scale, assessed using questionnaires.
2.3.3. Blood markers
Derivatives of reactive oxygen metabolites (d-ROMs)15) and Oxidative Stress Index16) were analyzed using blood 

samples collected from the participants. Blood was obtained in the morning to eliminate the effects of diurnal variation.
2.3.4. Urine markers
Isoprostane,17) 8-OHdG (8-hydroxy-2′-deoxyguanosine),18) vanillylmandelic acid,19) and homovanillic acid20,21) were 

analyzed using urine samples collected from the participants. Urine was obtained upon waking to eliminate the effects of 
diurnal variation. In addition, to eliminate the influence of the sex cycle, urine was not collected from those menstruating.

Fig. 1  Flow of stress state evaluation process and result output using 3 kinds of facial/skin data. (A) Questionnaire for 
skin, (B) facial image, and (C) facial movie. 
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2.3.5. Autonomic status
Heart rate and heart rate variability (CVRR: coefficient of variation of R–R interval and LF/HF: the ratio of the 

low- and high-frequency bands in heart rate variability)22,23) were collected using wearable heart rate sensors (myBeat, 
UNION TOOL, Shinagawa-ku, Tokyo). To obtain data on different variations of autonomic status, data were collected in 
both sitting and standing positions.

2.3.6. Data handling
Each stress measure of Quality of life status, Blood markers, and Urine markers was binarized using the threshold 

values described in the reference studies. If threshold values were not reported in the cited references, binarization 
was performed based on the average value of the acquired data. The measured Autonomic status was used as numer-
ical data.

2.4. Stress evaluation models
Separate evaluation models were created using various machine learning techniques to predict select stress outcomes 

in each of the 5 categories from the 3 different sources of facial data. Unlike the general machine learning approach 
where “the machine detects what the human can detect,” we aimed to establish machine learning technologies that “eval-
uate what the human does not detect.” Therefore, various models were exhaustively created using various machine learn-
ing techniques and objective variables based on facial data characteristics. The criteria for accuracy (using validation 
data) for establishing models were set at >0.7 based on the previous study, wherein the model evaluating the subjects’ 
political principles using facial data was developed with an accuracy of approximately 0.7.24)

2.4.1. Models based on facial skin questionnaire data
Ten models of stress outcomes (Chalder Fatigue Scale, Mental Fatigue Scale, Physical Fatigue Scale, and Athens 

Insomnia Scale, isoprostane, 8-OHdG, vanillylmandelic acid, homovanillic acid, d-ROMs, Oxidative Stress Index) 
were created using the responses to 25 items of a subjective questionnaire for facial skin, sex, and age data. Principal 
component analysis was performed as a preprocessing step in the model creation process to verify the usefulness of 
dimensionality reduction (Fig. 1A). Regression models were created for each objective variable by combining the 6 
types of regression analysis (multiple regression, logistic regression, ridge regression, least absolute shrinkage and 
selection operator regression, Random Forest, and support vector machine) and patterns of dimension compression 
(0–23), and 3 types of sex models (combined sex models and sex-separated models). Overall, 432 models were 

Table 1 25-Item questionnaire* for subjective assessment of facial skin condition.

 1. Do your skin or lips dry out easily?
 2. Do your cheeks become inflamed and hot?
 3. Does your skin have urticaria easily?
 4. When you scratch your skin, do you tend to get marks on it?
 5. Do you have reddish-purple dots or patches on your skin?
 6. Do you sweat without doing anything?
 7. Do you bruise easily?
 8. Does your upper eyelid swell easily?
 9. Do you have dark circles under your eyes?
 10. Do you develop age spots easily?
 11. Do you have pale lips?
 12. Is your forehead greasy?
 13. Do you have redder lips compared to other people?
 14. Is your nose greasy and shiny?
 15. Do you get pimples easily?
 16. Do you see capillaries on the cheeks?
 17. Do you feel a fuzzy, uneven coloration in your complexion?
 18. Do you feel stiffness when you touch your face?
 19. When you touch your face, does your hand feel like it is being sucked?
 20. Do you feel a sense of dryness immediately after washing your face?
 21. Do you feel that your face is more yellowish than before?
 22. Is there redness in the cheeks?
 23. Does your face ever get chapped?
 24. Does your skin get acne?
 25. Have you ever had a problem with your facial skin or experienced symptoms of skin problems?

*The actual questionnaire was presented to the participants in Japanese.

Appl. Cosmetic Sci. & Tech. Vol. 1, No. 1 2025 39



Appl. Cosmetic Sci. & Tech., 2025; 1(1)

examined: 6 types of regression models × 24 patterns of dimension compression × 3 sex models. From the 432 
models, we searched for the best evaluation model with the highest accuracy. Five cross-validations (learning 8: 
verification 2) were performed to evaluate the model, and the accuracy and F1 score (harmonic average of precision 
and recall) were calculated.

2.4.2. Models based on facial image data
Nine models of stress outcomes (Chalder Fatigue Scale, Pittsburgh Sleep Quality Index, Frustration score, isopros-

tane, 8-OHdG, vanillylmandelic acid, homovanillic acid, d-ROMs, and Oxidative Stress Index) were created using facial 
images (Fig. 1B). Evaluation models were developed for each objective variable by combining 4 types of machine 
learning models of neural network (ResNet, FixRes, HRNet, and DenseNet), 4 face image sites (whole face, cheeks, 
eyes, and mouth), and 2 types of sex-separated models. A total of 16 models were examined to determine the best eval-
uation model with the highest accuracy. Five cross-validations (learning 8: verification 2) were performed to evaluate 
the model, and the accuracy and F1 score (harmonic average of precision and recall) were calculated. As ResNet neural 
networks25) demonstrated the highest accuracy, we subsequently focused on improving the accuracy in the ResNet model 
by hyperparameter tuning to optimize the settings of the machine learning algorithms.

While the machine learning models inherently identify and discriminate crucial image features during model creation, 
visualizing the specific facial areas employed in the established evaluation model is valuable for validating the machine 
learning model. Gradient-weighted class activation mapping (Grad-CAM) was used to visualize features from facial 
images using a heat map, with redder areas indicating stronger predictive model characteristics.26)

2.4.3. Models based on facial video data
Four models of stress outcomes (heart rate, CVRR, LF/HF, and LF/HF rank) were created from facial video data 

(Fig. 1C) using approaches described previously.27,28) Here, data on facial color change patterns were utilized. Facial 
color changes because of the movement of blood on the skin. Therefore, by analyzing the change pattern of facial color, 
the heart rate and its fluctuation pattern can be calculated. In addition, as the autonomic nervous system controls the 
fluctuation pattern of the heart rate, the state of the autonomic nervous system can be calculated from the heart rate 
fluctuation pattern. Each image in the video was separated into frames (30 fps). Subsequently, the central part of the 
face was detected using face detection technology (face landmark detection),29) and the changes in the color component  
(x = green/[red + green + blue]) were calculated. Further, the data were Fourier transformed (Welch’s method), and the 
mode frequency of the color component was detected as the heart rate. After noise elimination using a bandpass filter, 
spline interpolation converted the data into equal time interval data (R–R interval). CVRR was calculated using the 
mean (μ) and standard deviation (σ) of the R–R interval, with the following formula: CVRR = σ/μ × 100 (%). More-
over, the “R–R interval” was Fourier transformed (Welch’s method) to analyze the power spectrum and calculate low- 
frequency (0.04–0.15 Hz) and high-frequency (0.15–0.4 Hz) bands in heart rate variability. LF/HF, the ratio of low- and 
high-frequency bands, was calculated.

3. Results

3.1. Participants
A total of 2343 participants (age: 36.89 ± 9.04 years, 47.4% female) were enrolled in the study. Skin questionnaires 

were completed by 1411 (for the Chalder Fatigue Scale and Athens Insomnia Scale) to 1892 (for Mental and Physical 
Fatigue Scales) participants, and facial images (for the Chalder Fatigue Scale, Pittsburgh Sleep Quality Index, Frustra-
tion score, blood markers, and urine markers) and videos (for heart rate, CVRR, LF/HF, and LF/HF rank) were obtained 
from 395 and 56 participants, respectively.

3.1.1. Models based on facial skin questionnaire data
Table 2 shows the details and accuracy of the stress state evaluation models using facial skin questionnaire data, 

with accuracy >0.7. Both the combined sex models and the sex-separated models for the Chalder Fatigue Scale, Mental 
Fatigue Scale, and Physical Fatigue Scale had accuracy >0.7. The accuracy of the male sex-separated evaluation model 
for the Athens Insomnia Scale was >0.7. Conversely, a reliable model could not be constructed for blood and urine stress 
markers.

3.1.2. Models based on facial image data
Table 3 demonstrates the details and accuracy of the stress state evaluation models using facial image data. Some 

predictions were most accurate using whole-face images, whereas others were most accurate using images of specific 
portions of the face. All models for the Pittsburgh Sleep Quality Index using whole-face images, Frustration score 
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and d-ROMs with mouth area images, and Oxidative Stress Index using cheek area images had accuracy >0.7 in both 
males and females. Models for the Chalder Fatigue Scale using mouth area images, 8-OHdG and vanillylmandelic acid 
using eye area images, and homovanillic acid using mouth area images had accuracy >0.7 in females, whereas models 
for isoprostane using mouth area images had accuracy >0.7 in males. Figure 2 shows the results of the facial location 
images acquired using Grad-CAM. It can be confirmed that the model is constructed using the facial locations shown 
in Table 3.

Table 3 Evaluation models with the highest accuracy for predicting stress outcomes using facial image data.

Methods Details Area Sex n Model Accuracy F1 score

Stress scale test Questionnaire

Chalder Fatigue Scale Mouth
Female 196 ResNet 0.753* 0.644
Male 199 ResNet 0.695 0.621

Pittsburgh Sleep Quality 
Index

Whole face
Female 196 ResNet 0.703* 0.690
Male 199 ResNet 0.703* 0.675

Frustration score Mouth
Female 196 ResNet 0.737* 0.684
Male 199 ResNet 0.703* 0.682

Physiological test

Urine test

Isoprostane Mouth
Female 196 ResNet 0.684 0.674
Male 199 ResNet 0.726* 0.698

8-OHdG Eye
Female 196 ResNet 0.711* 0.696
Male 199 ResNet 0.653 0.641

Vanillylmandelic acid Eye
Female 196 ResNet 0.726* 0.725
Male 199 ResNet 0.637 0.627

Homovanillic acid Mouth
Female 196 ResNet 0.705* 0.665
Male 199 ResNet 0.689 0.669

Blood test

d-ROM Mouth
Female 196 ResNet 0.826* 0.659
Male 199 ResNet 0.732* 0.703

Oxidative Stress Index Cheek
Female 196 ResNet 0.879* 0.686
Male 199 ResNet 0.716* 0.709

*Models with accuracy >0.7. 

Table 2 Evaluation models with the highest accuracy for predicting stress outcomes using Facial Skin Questionnaire data.

Methods Details Sex n Model PCA Accuracy F1 score

Stress scale test Questionnaire

Chalder Fatigue Scale
All 1411 SVM – 0.744* 0.676

Female  654 Linear 1 0.781* 0.679
Male  757 Logistic 1 0.782* 0.703

Mental Fatigue Scale
All 1871 Linear – 0.783* 0.749

Female  875 Logistic 1 0.742* 0.700
Male  996 Lasso 1 0.804* 0.730

Physical Fatigue Scale
All 1871 Linear – 0.777* 0.742

Female  875 Linear 2 0.789* 0.725
Male  996 Lasso 1 0.818* 0.742

Athens Insomnia Scale
All 1411 Linear – 0.668 0.648

Female  654 Random Forest – 0.679 0.668
Male  757 Lasso 1 0.701* 0.669

Physiological test
Urine test

Isoprostane

Reliable models could not be constructed

8-OHdG
Vanillylmandelic acid
Homovanillic acid

Blood test
d-ROM
Oxidative Stress Index

*Models with accuracy >0.7.
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3.1.3. Models based on facial video data
Table 4 presents the evaluation accuracy of the stress state evaluation models using facial video data. All 4 models for 

the dynamic stress states, reflected by autonomic nervous system-based biomarkers—heart rate, CVRR, LF/HF, and LF/
HF rank—had a correlation coefficient or accuracy >0.7.

Fig. 2  Grad-Cam-based visualization, highlighting the specific facial areas employed in the established evaluation mod-
els. Redder areas in the heat map indicate stronger predictive model characteristics. The Chalder Fatigue Scale, 
Frustration score, Isoprostane, Homovanillic acid, and d-ROM estimation models were established mainly using 
images of the mouth area. The 8-OHdG and vanillylmandelic acid models were established using images of the 
eye area. The model of the Pittsburgh Sleep Quality Index was established using images of the entire face, and the 
Oxidative Stress Index was established using images of the cheek area. 
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4. Discussion

The objective of this study was to develop user-friendly technology utilizing deep learning methods to capture and 
analyze facial data, enabling accessible stress level estimation. While stress monitoring holds significance for individ-
uals in modern society, accurately gauging stress levels proves challenging owing to diverse symptoms and dynamic 
fluctuations. Stress tends to manifest in the face and skin, suggesting the potential to develop a technology for assessing 
stress levels based on facial data. We hypothesized this potential through a reverse analysis of facial and skin character-
istics. Facial data were extracted from a subjective 25-item facial skin questionnaire, facial images, and videos obtained 
using a smartphone and used to build evaluation models for various stress outcomes that included stress measured using 
subjective questionnaires (for fatigue, sleep, and frustration) and using various blood, urine, and autonomic markers. 
Multiple models were created in an exhaustive manner using various machine learning techniques, and the models with 
the highest accuracy were chosen.

This approach yielded several models with accuracy >0.7 from the various sources of data. The models using facial 
image data emerged as the most accurate for predicting various static stress outcomes derived from questionnaires or from 
blood/urine biomarkers. These models accurately predicted stress states, as measured by the Pittsburgh Sleep Quality 
Index, Frustration score, blood d-ROM levels, and Oxidative Stress Index in both males and females, and by the Chalder 
Fatigue Scale, urine 8-OHdG, vanillylmandelic acid, homovanillic acid levels in females, and urine isoprostane levels 
in males, respectively. Some predictions were most accurate using whole-face images (Pittsburgh Sleep Quality Index), 
whereas others were most accurate using images of specific portions of the face, for example, mouth (Chalder Fatigue 
Scale, Frustration score, isoprostane, homovanillic acid, and d-ROMs), eye (8-OHdG and vanillylmandelic acid), or cheek 
(Oxidative Stress Index). Due to the well-known correlation between subjective stress markers (e.g., fatigue or insomnia) 
and oxidative stress biomarkers,16,30–33) we were able to reasonably estimate stress using facial data in our study. More-
over, the results indicating different facial sites correlated with different biomarkers are intriguing. Various biomarkers 
and inner conditions manifest specific characteristics in distinct facial areas. For example, increased bilirubin affects 
eye color,34) while systemic lupus erythematosus causes symmetrical eczema on the cheeks (butterfly rash).35) Melasma, 
linked to female hormones, often appears on the cheeks,36) and lip color changes are observed in anemic individuals. 
Considering these examples, our study results may relate to areas where (1) biomarker-related color changes are easily 
noticeable, (2) skin alterations are likely to occur from external factors (such as ultraviolet light) in addition to biomarker 
effects, (3) secondary changes (such as immune reactions) are triggered by biomarkers, and (4) blood color changes are 
likely to occur. Detailed analysis of biomarker pathways on the skin is necessary to validate these possibilities, providing 
crucial insights into what aspects of the face artificial intelligence evaluates and how. This constitutes an important avenue 
for future research. However, our current study aimed to construct a highly accurate model for estimating stress markers, 
which we successfully achieved. Besides its accuracy in predicting various stress states, the ease and simplicity of captur-
ing images with camera-equipped devices, such as smartphones, tablets, and personal computers, underscores the user-
friendly advantage of our image-based analysis model, making it the preferred option for large-scale stress assessments.

Conversely, “dynamic stress states,” reflected by autonomic nervous system-based biomarkers such as the heart rate, 
CVRR, and LF/HF, were accurately predicted by facial video data. Since dynamic states cannot be assessed using 
“static” facial images, these models proved valuable. While models based on facial questionnaires could be constructed 
for subjective stress markers like the Chalder Fatigue Scale, Mental Fatigue Scale, Physical Fatigue Scale, and Athens 
Insomnia Scale, they could not be constructed for blood and urine stress markers. This may be attributed to the ques-
tionnaire’s inability to capture detailed facial information obtainable from images. Improving the facial questionnaire 
content could address this limitation in the future. Nevertheless, even the current models remain useful, particularly in 

Table 4 Evaluation models with the highest accuracy (>0.7) for predicting stress outcomes using facial video data.

Details n Model
Correlation coefficient  

or Accuracy

Physiological test

Heart Rate 56 Fourier transform r = 0.988
CVRR 56 Fourier transform r = 0.755
LF/HF 56 Fourier transform r = 0.722

LF/HF Rank 56 Fourier transform Accuracy = 0.875
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situations where photography is not feasible. Overall, these results highlight the advantages of each model for specific 
outcomes and scenarios.

In a prior investigation, we successfully predicted fatigue levels through the analysis of stratum corneum cells.7) 
Extending this framework, we postulated that stress levels could be inferred from facial data. The technology developed 
in this study holds immense promise for broad adoption and practical utilization, as it can be effortlessly employed on 
a routine basis, noninvasively, and by anyone with the convenience of a smart device or personal computer. The ability 
to assess multiple stress states comprehensively through facial skin analysis without the need for collecting biological 
samples is particularly advantageous in that it allows for easy stress monitoring in daily life, as well as in the workplace, 
where stress levels are typically high.

Proactive recognition of stress levels, prior to them causing disruptions in daily life, constitutes the crucial initial 
step in effective stress management strategies. Beyond its applicability in organizational health initiatives, when viewed 
from a personal standpoint, comprehending one’s daily stress levels offers the benefit of enhancing self-care motivation 
and fostering a shift in self-awareness toward self-care. This holds substantial importance in driving behavioral changes 
toward self-care actions.

Another unique aspect of this study is the use of facial data. In today’s society, analysis using facial data is conducted 
in various places. For example, skin analysis at cosmetics counters, personal authentication when entering a room to 
protect confidentiality, and contactless body temperature measurement have already been implemented. Combining 
our technology with these existing technologies could be an effective means to achieve well-being by estimating stress 
conditions without increasing the burden on the user. Consequently, this skin-based stress analysis is regarded as highly 
promising for social well-being.

However, the study has a few limitations. First, the stress evaluation models were created using only data from Japa-
nese participants and may not be directly generalizable to other populations. Future studies on other heterogeneous pop-
ulations are needed to adapt the models for other ethnicities. Second, the study evaluated separate models derived from 
the different domains (facial skin questionnaire, images, or videos) and did not combine data from the various sources. 
Models that use data from multiple domains may allow for a more accurate model and should be investigated in future 
studies. Lastly, this study only provided a proof-of-concept and did not demonstrate implementability or effectiveness 
on stress recovery. Studies aimed at demonstrating the application of the facial stress analysis together with a solution 
technology to promote stress recovery through multiple sensory (5-sense) experiences are currently ongoing.

5. Conclusion

In summary, this study introduced multiple machine learning-based prediction models for assessing both static and 
dynamic stress levels using facial information comprising images, videos, and questionnaires that can be easily captured 
and analyzed with a camera-equipped device. This facial skin-based stress analysis holds promise for diverse applica-
tions, ranging from organizational health management to individual well-being, for early and easy detection of stress. 
This study effectively bridges the gap between skin analysis technology and well-being, transforming the concept of skin 
from a mere beauty attribute to a tool for enhancing overall quality of life.
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