Discovery of Global Common Denominators of Skin Reflectance that Enhance Attractive Impressions

Ryo Kakimoto*, Emi Kakizawa, Takashi Takeshita, Yuki Kotakeyama, Keiji Igarashi and Yuji Masubuchi Research Laboratories, KOSÉ Corporation, Tokyo, Japan

In response to the global need to respect diverse individuality in terms of skin features, minds, and social attributes, desirable foundations have changed from those that simply conceal imperfections to those that bring out the beauty in individuality. Previous research with Japanese participants has shown that the spectral reflectance of skin is closely related to the impression that it creates. However, the relationship between impression and spectral reflectance has never been investigated for global skin tones. In this study, we aimed to comprehensively elucidate the relationship between skin spectral reflectance and impressions for the development of foundations that enhance the attractive impressions envisioned by each individual. We first classified global skin tones using a statistical method based on unique parameters derived from spectral reflectance. Second, we investigated the distinctive spectral reflectance patterns that can accentuate specific impressions in respective skin tone categories, using an observation room for precise control of participants' spectral reflectance closely matching the living environment. We found new global common denominators of 3 spectral reflectance patterns that enhance attractive impressions, and we identified the conditions for maximizing these impressions while maintaining the "natural-look" of each bare skin. We also discovered that foundations controlled to achieve these 3 spectral reflectance patterns had the same impression-enhancing effect as in the light source manipulation experiment. We concluded from our study that by creating a foundation based on our novel knowledge, the desirable impression envisioned by each individual could be achieved while making the most of the natural skin tone. This discovery is useful in bringing out individual beauty, by offering custom-made products that are tailored to the skin conditions and desirable impressions.

Key words: global skin tones, individual beauty, impression evaluation, spectral reflectance, foundations, skin tone categorization, custom-made products, impression-enhancing effect, natural-look, observation room

1. Introduction

In response to the global need to respect diverse individuality in terms of skin features, minds, and social attributes, the cosmetic industry is faced with the important challenge of bringing out individual beauty. Our recent survey

Received: October 7, 2024; Accepted: March 17, 2025

*Corresponding author: Ryo Kakimoto (E-mail: r-kakimoto@kose.co.jp)

Research Laboratories, KOSÉ Corporation, 48-18, Sakae-Cho, Kita-ku, Tokyo 114-0005, Japan

DOI: 10.69336/acst.2024-09

© The Society of Cosmetic Chemists of Japan 2025

This article is licensed under a Creative Commons Attribution 4.0 International License.

(conducted during 2 weeks in 2021 with 3000 participants worldwide) revealed how individuals want to express their inner personality or way of life through having a desired skin complexion, such as "Healthy (46%)," "Lively (35%)," and "Elegant (25%)" (the percentage is the response rate in the multi-answer).

We have focused on optimizing "the color balance of the reflected light from the skin" (hereafter, skin spectral reflectance) by applying foundations to achieve an individual's desirable impression.

Previous studies have addressed these needs, showing that the profile of reflected light from the skin is closely related to impressions evoked by a complexion.²⁾ For example, strengthening the reflection of blue color from the skin was found to create an elegant impression in Japanese participants.³⁾ Furthermore, previous studies on skin spectral reflectance and impressions showed that enhanced reflectance of light in wavelengths of 600–700 nm gave the skin an even and favorable appearance,⁴⁾ and reducing light in 500–600 nm gave the skin a ruddy complexion.⁵⁾ For example, if an impression evaluation is conducted in a dark room with spot lighting only on the face, the impression will appear excessively good and a correct quantitative evaluation cannot be performed.

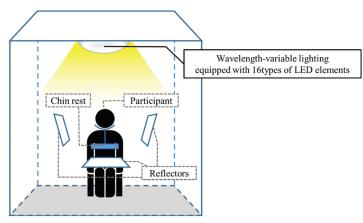
However, these studies did not consider the environmental conditions for evaluating impressions. People are known to have skin-specific color perception, and they are very sensitive to the surrounding conditions.⁶⁾ For example, if an impression evaluation is conducted in a dark room with spot lighting only on the face, the impression will appear excessively good and correct quantitative evaluation cannot be performed. Therefore, we have considered it necessary to create an evaluation room that is uniformly illuminated by diffused light from the ceiling so that there is no illuminance gap between a participant's face and the surrounding space.

In addition, when skin spectral reflectance is optimized by foundation, it is necessary to investigate the relationship between skin spectral reflectance and impression while adjusting the light to match the participant's natural skin tone. However, these studies did not consider the skin tone of each participant. Therefore, the range of color difference from a bare skin must be precisely controlled to deviate from an individual's natural skin tone.

Furthermore, in previous studies, participants were Japanese only, and they did not include global skin tones. A comprehensive study of the entire range of global skin tones is required to propose a variety of foundations that are inclusive of each individual.

The purpose of this study was to comprehensively clarify the relationship between skin spectral reflectance and impressions in a real indoor light environment to develop foundations that enhance the impression envisioned by each individual. To achieve this goal, we first classified global skin tones using a statistical method based on unique parameters derived from spectral reflectance. Second, we set up a Multi-Wavelength Observation Room capable of reproducing numerous combinations of spectral reflectance patterns on a participant's face while controlling the color difference from a participant's bare skin to maintain a natural complexion, and we precisely and comprehensively investigated the relationship between skin spectral reflectance and impressions across all global skin tones. Third, we developed foundations with an optimized balance of spectral reflectance and evaluated their impression-enhancing effects.

Herein, we report on the key parameters for the classification of global skin tones based on skin spectral reflectance and the characteristics of each skin tone category. We also report on the spectral reflectance patterns that enhance a desirable impression in the respective skin tone categories, as well as the impression-enhancing effects of foundations that imitate these spectral reflectance patterns.


2. Materials and Methods

2.1. Global skin tone classification based on spectral reflectance

Spectral reflectance data (400–700 nm, 10 nm pitch) were obtained for a total of 698 people (exemplified as Japanese, Chinese, Thai, Indian, Caucasian, and African American) from the Standard Object Color Spectra Database (ISO/TR16066:2003). Using this dataset, we determined 37 categorical parameters, 9 based on color index values expressing lightness values and hue and 28 based on shape characteristics of spectral reflectance, such as intensity at each wavelength region, ratio of each wavelength region, and slope of a certain wavelength region:

- Color index: CIELAB color space, Tristimulus value (X, Y, Z), RGB color space (9 in total)
- Reflectance ratios of hemoglobin absorption peaks at 400–420 and 510–610 nm (11 in total)
- Area ratios for each wavelength region (17 in total)

These parameters were subjected to principal component analysis, and the principal component scores were used in a hierarchical clustering analysis (Ward method) to classify the data into 6 global skin tone categories, C1–C6 (shown in Fig. 3).

Multi-Wavelength Observation Room

Fig. 1 Appearance of the Multi-Wavelength Observation Room.

Tuble 1	impression terms and their definitions.
Impression terms	Definition
Elegant skin	The skin has a pink undertone and a glow to it.
Clear skin	The skin has a glow and is without dullness.
Bright skin	The skin has a glow to it.
Warm skin	The skin has yellow, orange, or red undertones.
Lively skin	The skin has a ruddy complexion and is bright.
Healthy skin	The skin has a ruddy complexion and is even.

Table 1 Impression terms and their definitions.

2.2. Setting up the multi-wavelength observation room

We set up a Multi-Wavelength Observation Room equipped with a light source incorporating 16 types of light-emitting diode (LED) elements (manufactured by Telelumen LLC, Saratoga, California, United States) on the ceiling, and a chin rest for fixing the face to keep the precise position, with surrounding reflectors to diffuse light uniformly throughout the room (Fig. 1). The illuminance around the face was set at 150 lx, reflecting the illuminance in a real indoor light environment.^{7,8)}

2.3. Impression evaluation test in the multi-wavelength observation room

2.3.1. Participants

To recruit participants for all 6 skin tone categories classified in Section 2.1, the spectral reflectance data from the forehead area of the participant candidates were obtained using a spectrophotometer (CM-700d, Konica Minolta, Tokyo, Japan). Using a k-nearest neighbor algorithm, the participants were assigned to one of the 6 skin tone categories. A total of 44 participants from each skin tone category were selected for the impression evaluation test (number of participants in each skin tone category are C1 = 7, C2 = 8, C3 = 8, C4 = 7, C5 = 8, and C6 = 6). All participants signed an informed consent statement prior to participation in the study.

2.3.2. Impression terms

Impression evaluation terms were important to determine based on customer needs. First, we selected 10 impression terms from the product claims that had already been launched in the global market. In addition, from a survey of 3,000 people in the United States, European Union, and Asia, who were asked to choose desirable impressions from the above 10, 6 impression terms were selected by more than 15% of the respondents, and these were then used for the impression evaluation test. The impression terms are shown in Table 1 with their definitions. The definitions were extracted from the results of the same survey, in which customers were asked to select from 10 options the color or texture associated with each impression term.

2.3.3. Spectral reflectance patterns illuminating a participant's face

In this experiment, the standard light condition, abbreviated as "STD," which mimics the spectra of the standard indoor LED lighting with a relative color temperature of 5,000 K, was used.^{7,8)} Because of the enormous number of patterns for increasing or decreasing the output of 16 different LED elements, it was necessary to limit the number of

Table 2	The characteristics of 5 spectral reflectance patterns to be
	illuminated in the impression evaluation tests.

Spectral reflectance pattern	Intensified wavelength range							
Spectral reflectance pattern	Peak (nm)	Range (nm)						
Violet-UP	435	410–470						
Blue-UP	455	430-490						
Orange-UP	600	570-620						
Red-UP	640	610-670						
Blue and	455	430-480						
Red-UP	640	610-670						

patterns to those that could enhance the impression terms, which are the target of this study. Therefore, we selected 5 spectral reflectance patterns by the following procedure:

- (1) We selected 7 LED elements with output peaks in the wavelength range of 401–730 nm, where the standard specific visual sensitivity based on the Commission Internationale de l'Éclairage is 0.0004 or higher, and which differ significantly in hue from each other. The output peak wavelengths of the 7 LED elements are 435, 455, 500, 525, 555, 600, and 640 nm.
- (2) We conducted an impression evaluation test with 10 expert evaluators on participants C1 and C6 (n = 1 for each) as the intensity of each LED element selected in (1) was increased, respectively. Four LED elements were selected from this preliminary test that were identified by 5 or more evaluators as being enhanced in any of the impression terms listed in Table 1. The output peak wavelengths of the 4 LED elements are 435, 455, 600, and 640 nm.
- (3) We conducted an impression evaluation test with 3 expert evaluators on participants C1 to C6 (n = 1 for each) when illuminated with 15 spectral reflectance patterns, which were a total combination of the 4 LED element enhancement patterns selected in (2) (a single element and a combination of 2–4 elements). The impression terms shown in Table 1 were evaluated, and patterns that were determined to be emphasized by 2 or more of the 3 expert evaluators were regarded as "impression-enhancing" patterns. Then, to avoid duplication, patterns that gave the same evaluation results were excluded, and finally, the remaining 5 patterns were selected (Table 2). Here, the patterns with multiple enhanced impression terms were included in the "same evaluation result" only when all of those impression terms matched. In addition, only cases in which the evaluation results for all skin tone categories C1–C6 matched were excluded. For example, if there were 2 patterns that enhanced "Elegant skin," "Clear skin," and "Bright skin" for all skin tone categories C1–C6, one of the patterns was excluded. However, the following 2 patterns were not excluded because the impression terms to be enhanced for all skin tone categories did not match:
 - A pattern that enhanced "Elegant skin," "Clear skin," and "Bright skin" for skin tone categories C1–C6.
 - A pattern that enhanced "Elegant skin," "Clear skin," and "Bright skin" for skin tone categories C1–C5, and that enhanced "Elegant skin" and "Clear skin" for skin tone category C6.

Figure 2 shows a conceptual diagram prepared for better understanding of the experimental conditions, with simulated images of the representative spectral reflectance patterns illuminated for each participant of skin tone categories C1 and C6, generated by a color simulation system of a spectroradiometer (Topcon Technohouse, Tokyo, Japan).

For all of the spectral reflectance patterns, the intensity of each LED element was adjusted for each participant so that the difference in lightness value (CIELAB) was within 1.0 from the bare skin. This meant that the change in lightness of the skin was eliminated from the impression evaluation. The color difference from the bare skin (hereafter, ΔE) was determined by a preliminary survey of 3 representative participants from the 6 skin tone categories (18 in total). In this survey, the intensities of each spectral reflectance were changed in 5 steps from that of STD to find out the optimal ΔE range to deviate from the individual's natural skin tone. We set the optimal ΔE range as 4.5 to 5.0, which produced a change in impression but did not generally deviate from the natural skin tones.

2.3.4. Impression evaluation method

Participants washed their faces before the test, acclimatized for 15 min at 25°C and 50% humidity, and then entered the Multi-Wavelength Observation Room. Participants sat in a chair and placed their faces on a chin rest for fixing the face, with a fixed 1.5 m distance between a participant and the evaluators. Ten expert evaluators scored the degree of

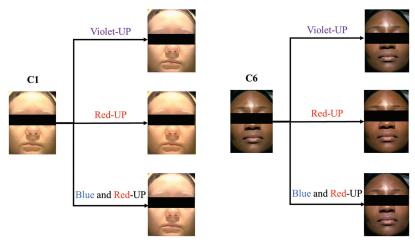


Fig. 2 Conceptual diagram of the experimental conditions, with simulated images of the representative spectral reflectance patterns illuminated to each participant.

change in the impressions compared to the impressions under STD illumination for the previously mentioned 5 spectral reflectance patterns. The impression evaluation tests were conducted under conditions in which the evaluators were not informed which pattern was being illuminated, and the order of illumination was randomized. A darkening period was inserted when changing to a light with a different spectral reflectance pattern. We ensured that the eyes were acclimated to the new light before the evaluation.

Each impression term was scored according to the following rules:

Score +3: The impression was obviously enhanced compared to STD.

Score +2: The impression was relatively enhanced compared to STD.

Score +1: The impression was slightly enhanced compared to STD.

Score 0: The impression was not different from STD.

Score -1: The impression was slightly decreased compared to STD.

Score –2: The impression was relatively decreased compared to STD.

Score -3: The impression was obviously decreased compared to STD.

In each impression evaluation test, the expert evaluators confirmed that there was no deviation from the participants' natural skin tone. The evaluation score was eliminated from the analysis if more than 2 evaluators out of 10 pointed out unnaturalness due to a deviation.

2.3.5. Analysis of evaluation results

The mean values of impression evaluation scores for each spectral reflectance pattern were calculated. Since the Shapiro–Wilk tests indicated that the scores for the impression evaluation test were not normally distributed, the Wilcoxon signed-rank test was used as the preferred test.

For easier understanding of the results, each mean value of the impression evaluation scores was listed according to the following abbreviations:

- -: The mean value was less than -0.5
- 0: The mean value was -0.5 or higher, and less than 0.5
- +: The mean value was 0.5 or higher, and less than 1.5
- ++: The mean value was 1.5 or higher

NR: Evaluated as deviating from the participant's natural skin tone by 2 or more evaluators.

2.4. Creation of a foundation with controlled spectral wavelengths and evaluation of its impressionenhancing effect

C2 and C6 (n = 1 for each) were selected as representative participants from the 6 skin tone categories. Three samples of liquid foundation with different spectral reflectance patterns (3 types of GLOBAL COMMON DENOMINATOR) were prepared for each participant. To obtain knowledge that can be widely applied in the cosmetic industry, the commonly used pigments (titanium dioxide, iron oxide, Red 30, and Blue 1 Lake) were used to formulate the liquid foundation. The

Table 3 Eigenvalues and cumulative contributions of each principal component, and factor loading matrix of principal component 1–3.

No.	Skin tone parameter	Principal component						
110.	Skill tolle parameter	1	2	3				
1	Approximate area total	0.989	0.010	0.143				
2	Area 400–430 nm	0.979	0.060	-0.151				
3	Area 460–490 nm	0.994	0.016	-0.030				
4	Area 540–570 nm	0.965	-0.232	0.109				
5	Area 570–600 nm	0.972	-0.161	0.165				
6	Area 600–630 nm	0.969	0.073	0.232				
7	Area 660–690 nm	0.921	0.144	0.353				
8	L*	0.966	-0.109	0.221				
9	Area ratio of 540–570 nm	0.391	-0.914	-0.008				
10	Area ratio of 570–600 nm	0.107	-0.937	0.185				
11	Intensity ratio of 610 nm	-0.526	0.803	0.240				
12	a*	-0.382	0.846	0.308				
13	Intensity difference of 700 and 400 nm	0.465	0.122	0.842				
14	Area ratio of 600–630 nm	-0.376	0.458	0.712				
15	b*	-0.443	-0.427	0.739				
	Eigenvalues [-]	25.7	5.5	4.0				
	% of variance	69.5	15.0	10.7				
	Cumulative %	69.5	84.5	95.2				

Note: The green shaded area represents parameters related to luminance values such as wavelength intensity, the red shaded area represents parameters related to redness, and the yellow shaded area represents parameters related to yellowness.

color difference (ΔE) between the foundation-applied skin and the bare skin was set at 3 to 4.5. The impression evaluation test was conducted by applying these liquid foundations to the participant's face and comparing the impression with bare skin. The impression evaluation and analysis procedures were the same as previously described in Section 2.2, except for the impression scoring rules. Each impression term was scored according to the following rules:

- → Score +3: The impression was obviously enhanced compared to bare skin.
- → Score +2: The impression was relatively enhanced compared to bare skin.
- → Score +1 : The impression was slightly enhanced compared to bare skin.
- → Score 0: The impression was not different from bare skin.
- → Score -1 : The impression was slightly decreased compared to bare skin.
- → Score -2: The impression was relatively decreased compared to bare skin.
- \rightarrow Score -3: The impression was obviously decreased compared to bare skin.

3. Results and Discussion

3.1. Global skin tone classification based on skin spectral reflectance

The results of principal component analysis of 37 categorical parameters derived from the spectral reflectance database for a total of 698 people are shown in Table 3. The cumulative contribution ratio of principal components 1 through 3 (95.2%) indicated that these 3 principal components are sufficient for capturing global skin tone characteristics. Principal component 1 was strongly associated with the lightness value and reflectance intensity in the entire visible light region (400–740 nm). Principal component 2 was associated with the characteristics of red hemoglobin, such as the a*-value (CIELAB) and the area ratio between 540 and 600 nm. Principal component 3 was associated with the characteristics of melanin, such as the b*-value (CIELAB), the intensity ratio between 400 and 700 nm, and the area ratio between 600 and 630 nm.

Principal component scores for each data were plotted in 3 dimensions, with principal component 1, principal component 2, and principal component 3 as the axes (Fig. 3, upper left). Using these principal component scores, a hierarchical clustering analysis was performed to classify the data into 6 categories from C1 to C6. The average reflectance value for each wavelength was calculated from the spectral reflectance data of each global skin tone category. The average spectral reflectance and representative skin tones for each skin tone category are shown in Fig. 3. C1 has the highest lightness

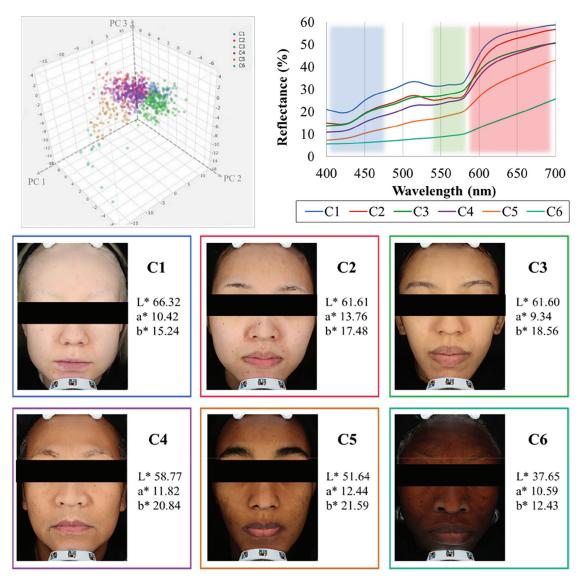


Fig. 3 3D plot of each principal component score with principal components 1–3 on the axes (upper left); average spectral reflectance for each skin tone category (upper right); and the representative skin tones for C1–C6 (bottom). 3D, 3 dimensional

value, with a dent at 540–580 nm similar to the spectral reflectance of hemoglobin. C2 and C3 have the second-highest lightness values. The difference between C2 and C3 is the reflectance ratio in the ranges 540–580 and 580–700 nm. C2 has a red undertone, with relatively high reflectance in 580–700 nm while having a dent at 540–580 nm as in C1, while C3 has a yellow undertone, with relatively high reflectance in 540–580 nm. The lightness values decrease in the order of C4, C5, and C6. C4 has a relatively red undertone with a lower reflectance ratio in 400–580 nm compared to that of C3. C5 and C6 are characterized by a linear increase from 400 to 580 nm, with a sharp increase after 580 nm.

From these results, global skin tones could be classified and characterized based on the spectral reflectance. It is suggested that this classification method is suitable for comprehensively clarifying the relationship between skin spectral reflectance and impressions.

3.2. Impression evaluation test in the multi-wavelength observation room

Table 4 shows the results of the impression evaluation test with 5 spectral reflectance patterns. These results on the relationship between spectral reflectance patterns and impressions revealed for the first time that there were 3 types of spectral reflectance patterns that could enhance various impressions. Specifically, GLOBAL COMMON DENOMINATOR 1 (Violet-UP or Blue-UP) resulted in significantly higher mean values for "Elegant skin," "Clear skin," and "Bright skin" impressions. Furthermore, GLOBAL COMMON DENOMINATOR 2 (Orange-UP or Red-UP) resulted

Table 4 The results of impression evaluation of 5 spectral reflectance patterns for global skin tone categories from C1 to C6.

	results of impressi	Skin tone	Skin tone Impression terms								
Spectral reflectance	e pattern	category	Elegant skin	Clear skin	Bright skin	Warm skin	Lively skin	Healthy skin			
		C1	++	++	++	0	++	++			
		C2	++	++	++	0	++	++			
	17: -1-4 LID	C3	++	++	++	+	++	++			
	Violet-UP	C4	++	++	++	0	+	++			
GLOBAL		C5	++	++	++	0	+	+			
COMMON		C6	NR	NR	NR	NR	NR	NR			
DENOMINATOR		C1	++	++	++	0	+	+			
1		C2	++	++	++	0	++	+			
	Blue-UP	C3	++	++	++	0	+	+			
	Blue-UP	C4	++	++	++	0	+	+			
		C5	++	++	++	0	+	+			
		C6	+	++	++	0	0	0			
	Orange-UP	C1	_	_	_	++	+	+			
		C2	_	_	_	++	+	+			
		C3	0	_	_	++	+	+			
		C4	_	_	_	++	+	+			
GLOBAL		C5	0	_	_	++	+	+			
COMMON		C6	0	_	0	++	+	+			
DENOMINATOR		C1	0	_	0	++	++	++			
2		C2	NR	NR	NR	NR	NR	NR			
	Red-UP	C3	0	0	0	++	++	++			
	Red-OF	C4	NR	NR	NR	NR	NR	NR			
		C5	0	0	_	++	++	++			
		C6	NR	NR	NR	NR	NR	NR			
		C1	++	++	++	+	++	++			
GLOBAL		C2	++	++	++	++	++	++			
COMMON	Blue and	C3	++	++	++	++	++	++			
DENOMINATOR	Red-UP	C4	++	++	++	+	++	++			
3		C5	++	++	+	+	++	++			
		C6	++	++	++	+	++	++			

^{-:} The score was less than -0.5; 0: the score was -0.5 or higher, and less than 0.5; +: the score was 0.5 or higher, and less than 1.5; ++: the score was 1.5 or higher; NR: the score was not rated due to a deviation from the participants' natural skin tone.

Note: The red shaded areas indicate high scores, while the blue shaded areas indicate low scores. The gray shaded areas indicate "NR" sections.

in significantly higher mean values for "Warm skin" impressions. Moreover, GLOBAL COMMON DENOMINATOR 3 (Blue and Red-UP) resulted in significantly higher mean values for all impressions, with particularly high means for "Lively skin" and "Healthy skin."

Surprisingly, the "apparent brightness" of GLOBAL COMMON DENOMINATOR 1 was obviously higher than that of STD, even though the lightness value (CIELAB) was the same as STD. As previously described, people are known to have skin-specific color perception,³⁾ and it was assumed that the results of higher "apparent brightness" in Violet-UP and Blue-UP could be a new discovery of such perception. As a result of this higher perception of brightness, the impressions of "Elegant skin," "Clear skin," and "Bright skin" were enhanced. Next, the reason for the higher mean values of "Warm skin" in GLOBAL COMMON DENOMINATOR 2 was thought to be that the spectral reflectance approached that of hemoglobin, with particularly high values in the region 600–700 nm, resulting in a ruddy complexion. Furthermore, the reason for the higher mean values of all impressions in GLOBAL COMMON DENOMINATOR 3 was thought to be that the apparent brightness of the skin was higher and the skin appeared to have a ruddy complexion. Among them, "Lively skin" and "Healthy skin" were especially enhanced due to the synergistic effect of the higher perception of brightness and ruddy complexion.

As a result, we discovered the global common denominators of the following 3 spectral reflectance patterns that could enhance attractive impressions.

Table 5 Spectral reflectance patterns that maximize the mean value of impression evaluation score for each skin tone category and impression.

Skin tone category		Elegant skin	Clear skin	Bright skin	Warm skin	Lively skin	Healthy skin	
Dattar	Pattern	Violet-UP	Violet-UP	Violet-UP	Red-UP	Blue and Red-UP	Blue and Red-UP	
C1	rattern	VIOIEI-OF	Blue-UP	VIOIEL-OF	Keu-OF	Dide and Red-OF	Red-UP	
S	Score	+2.3	+2.4	+2.4	+2.6	+2.1	+2.1	
C2	Pattern	Violet-UP	Violet-UP	Violet-UP	Orange-UP	Blue and Red-UP	Blue and Red-UP	
$C2 \frac{\text{Tattern}}{\text{Score}}$		+2.1	+2.3	+2.2	+2.2	+2.1	+2.1	
	Dattam	Violet-UP	Violet-UP	Violet-UP	Red-UP	Blue and Red-UP	Blue and Red-UP	
C3 Pattern	VIOIEL-UP	violet-UP	VIOIEL-UP	Reu-UP	Blue and Red-UP	Red-UP		
Score		+2.2	+2.5	+2.5 +2.3 +2.5		+2.0	+1.9	
	Dattarn	Blue and Red-UP	Violet-UP	Violet-UP	Oranga IID	Blue and Red-UP	Blue and Red-UP	
C4	Pattern	Violet-UP	violet-UP	VIOIEL-UP	Orange-UP	Blue and Red-UP	Diue and Red-UP	
Score		+1.9	+2.2	+2.2	+1.9	+1.9	+1.9	
	Dattam	Blue and Red-UP	· Violet-UP	Violet-UP	Red-UP	Blue and Red-UP	Dlug and Dad LID	
C5	Pattern	Violet-UP	violet-UP	VIOIEL-UP	Reu-UP	Blue and Red-UP	Blue and Red-UP	
Score		+2.0	+2.4	+2.2	+2.6	+2.1	+2.1	
C6	Pattern	Blue and Red-UP	Blue-UP	Blue-UP	Orange-UP	Blue and Red-UP	Blue and Red-UP	
C6 -	Score	+1.7	+1.9	+2.1	+2.0	+2.0	+1.7	

Note: The color of the text indicates the color of the wavelength region with high intensity for each spectral reflectance pattern.

GLOBAL COMMON DENOMINATOR 1 (Violet-UP or Blue-UP): Enhanced impressions of "Elegant skin," "Clear skin," and "Bright skin".

GLOBAL COMMON DENOMINATOR 2 (Orange-UP or Red-UP): Enhanced impression of "Warm skin."

GLOBAL COMMON DENOMINATOR 3 (Blue and Red-UP): Enhanced impressions of all, especially "Lively skin" and "Healthy skin."

Next, the optimal conditions that maximize the mean values of impressions for each skin tone category are shown in Table 5. The maximum mean value of each impression was higher than +1.7 compared to STD for each skin tone category. "Elegant skin" had the highest mean values in Violet-UP for C1–C5. "Elegant skin" also had the highest mean values in Blue and Red-UP for C4 to C6. "Clear skin" and "Bright skin" had the highest mean values in Violet-UP for C1–C5. "Clear skin" also had the highest mean values in Blue-UP for C6. Furthermore, "Warm skin" had the highest mean values in Red-UP for C1, C3, and C5, and the highest mean values in Orange-UP for C2, C4, and C6. Finally, "Lively skin" and "Healthy skin" had the highest mean values in Blue and Red-UP for all skin tone categories. "Healthy-looking" was also maximized in Red-UP in skin tone categories C1 and C3, whose reflectance in the red region (630–700 nm) is low relative to the whole spectral reflectance.

Through this research, we succeeded in comprehensively clarifying the optimal conditions that maximize various impressions in each skin tone category while maintaining their natural skin tones. We also quantitatively demonstrated that the impression-enhancing effect was sufficient to express the impression envisioned by each individual, by showing that there was a significant improvement in the mean values from +1.7 to +2.6. This knowledge enables us to create a custom-made foundation that achieves an individual's desirable impression by following the development process.

- (1) Interview a consumer for a desirable impression and attribute the impressions to GLOBAL COMMON DENOM-INATOR 1–3. Measure the spectral reflectance of bare skin.
 - (2) Simulate the target spectral reflectance based on the optimal conditions shown in Table 5.
- (3) Determine the type and amount of pigments formulated in the foundation by performing a fitting calculation to the target spectral reflectance using spectral reflectance data of each pigment, while considering the spectral reflectance of bare skin and the thickness of the foundation layer.
 - (4) Based on the pigment formula determined in (3), create a custom-made foundation for each individual.

3.3. Impression-enhancing effect of a foundation that controls spectral reflectance pattern

As the representative participants in all skin tone categories, C2 and C6 participants were recruited. The spectral reflectance of each participant's bare skin and foundation-applied skin is shown in Fig. 4. When GLOBAL COMMON DENOMINATOR 1 foundations (Violet-UP and Blue-UP) were applied, the spectral reflectance of each participant was relatively high at 420–480 nm compared to the bare skin. With the application of GLOBAL COMMON DENOMINATOR 2 foundations (Orange-UP and Red-UP), the spectral reflectance of C2 and C6 at 570–660 nm was found to

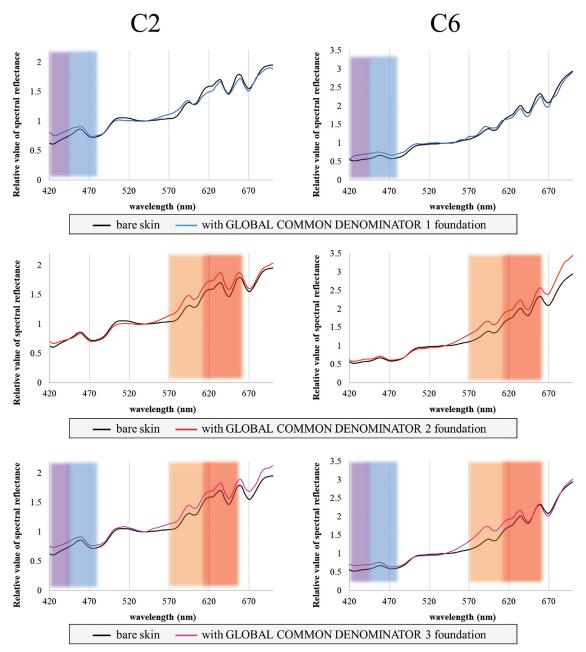


Fig. 4 The spectral reflectance of C2 (left row) and C6 (right row) with the foundation developed for each participant. These charts show the intensity at 540 nm set to 1 to compare the relative difference in intensity at each wavelength.

be increased. When GLOBAL COMMON DENOMINATOR 3 foundations (Blue and Red-UP) were applied to each participant, both the 420–480 nm and 570–660 nm regions were relatively high compared to the bare skin.

Table 6 shows the results of the impression evaluation test with the application of the developed foundations, compared to those obtained in Table 4 with the Multi-Wavelength Observation Room. When the GLOBAL COMMON DENOMINATOR 1 foundations (Violet-UP and Blue-UP) were applied, the mean values for "Elegant skin," "Clear skin," and "Bright skin" were higher compared to the bare skin for each participant. With the application of the GLOBAL COMMON DENOMINATOR 2 foundations (Orange-UP and Red-UP), the mean values for "Warm skin" were higher in both C2 and C6. In addition, mean values for all impressions were found to be higher for GLOBAL COMMON DENOMINATOR 3 foundations (Blue and Red-UP), with particularly higher values for "Lively skin" and "Healthy skin" for C6.

These results have shown that each impression was successfully enhanced by applying the foundations developed based on our knowledge of the comprehensive relationship between skin spectral reflectance and impressions.

Table 6 The results of the impression evaluation test with foundation application (left) and those with the Multi-Wavelength Observation Room (right).

		Lively Healthy skin skin		+			+			‡		0			+				‡							
		Lively skin		+			+			‡			0			+			‡							
Multi-Wavelength Observation Room	n terms	Warm skin		0		‡		‡		‡		‡		‡		‡			0			‡			+	
	Impression terms	Bright skin		‡			I		I		I			‡			‡			0			‡			
ength Ob		Clear skin					ı		‡		‡ ‡		I			‡										
ulti-Wavel		Elegant skin		‡			I			‡			+			0			‡							
Mu	Created reflectance		GLOBAL COMMON	DENOMINATOR 1	(Blue-UP)	GLOBAL COMMON	DENOMINATOR 2	(Orange-UP)	GLOBAL COMMON	DENOMINATOR 3	(Blue and Red-UP)	GLOBAL COMMON	DENOMINATOR 1	(Blue-UP)	GLOBAL COMMON	DENOMINATOR 2	(Orange-UP)	GLOBAL COMMON	DENOMINATOR 3	(Blue and Red-UP)						
	Skin	tone category	C2							90 Ce																
	Impression terms	Healthy skin		0			‡			+			0			‡			‡							
		Lively	0				+			+			0			+			‡							
		Warm skin		I			‡			+		0			0				+							
и		Bright skin	+			0			‡			++		n				+								
Foundation		Clear skin		‡			0			‡			+			0			+							
Ĭ,		Elegant skin		+			+			‡			+			0			‡							
		FD type	GLOBAL COMMON	DENOMINATOR 1	(Violet-UP, Blue-UP)	GLOBAL COMMON	DENOMINATOR 2	(Orange-UP, Red-UP)	GLOBAL COMMON	DENOMINATOR 3	(Blue and Red-UP)	GLOBAL COMMON	DENOMINATOR 1	(Violet-UP, Blue-UP)	GLOBAL COMMON	DENOMINATOR 2	(Orange-UP, Red-UP)	GLOBAL COMMON	DENOMINATOR 3	(Blue and Red-UP)						
	Clyin tone	C2 C2							90																	

Note: The red shaded areas indicate high scores, while the blue shaded areas indicate low scores. The color of the text indicates the color of the wavelength region with high intensity for each spectral reflectance pattern.

When the developed foundations were applied, the C2 participant commented that "I feel my skin looks bright when applying GLOBAL COMMON DENOMINATOR 1 foundation (Violet-UP and Blue-UP), while the skin looks healthy with a ruddy complexion when applying GLOBAL COMMON DENOMINATOR 2 foundation (Orange-UP and Red-UP). I particularly like GLOBAL COMMON DENOMINATOR 3 foundation (Blue and Red-UP) the best for looking both bright and healthy." The C6 participant also commented that "When I apply GLOBAL COMMON DENOMINATOR 3 foundation (Blue and Red-UP), I feel my skin has the proper brightness and warmth, but I like GLOBAL COMMON DENOMINATOR 2 foundation (Orange-UP and Red-UP) the best because it gives a warm impression." Both participants were very satisfied that these 3 types of foundations could give a variety of impressions, and had the potential to expand the range of expression of their individual beauty.

We successfully concluded our study that by creating a foundation based on our novel knowledge of the comprehensive relationship between skin spectral reflectance and impressions, the desirable impression envisioned by each individual could be achieved while making the most of the natural skin tone. This finding is bound to expand the benefits of foundations as a useful method to bring out individual beauty.

4. Conclusion

In this study, our investigations led to a new discovery of the global common denominators of 3 spectral reflectance patterns that can enhance an individual's attractive impression. We also succeeded in comprehensively clarifying the optimal conditions of the spectral reflectance patterns that maximize various impressions in each skin tone category, while maintaining their natural skin tones. Furthermore, each desirable impression was successfully enhanced by applying the foundations developed based on our knowledge of the comprehensive relationship between skin spectral reflectance and impressions.

We successfully concluded our study showing that by creating a foundation based on our novel knowledge, the desirable impression envisioned by each individual could be achieved while making the most of the natural skin tone. This discovery is useful in bringing out individual beauty by offering custom-made products that are tailored to the skin conditions and desirable impressions. Furthermore, our study can serve as an important knowledge not only for make-up products but also for various beauty industries, such as skincare, online counselling, and residential lighting, all of which contribute to beauty in individuality. We believe our knowledge will encourage people around the world to express their individuality more proactively and to respect diversity.

Acknowledgments: We thank Ms. Colleen Theron and Ms. Hannah Dale (from Ardea International), who are professionals in business and human rights matters, for their insight and expertise in reviewing the paper.

Conflict of Interest: None.

Abbreviations: LED, light-emitting diode; STD, standard

References

- 1) S. Guichard, V. Roulier, Cosmetic Dermatology, 176–185 (2015)
- 2) N. Ojima, Journal of the Society of Photography and Imaging of Japan, 65, 264–269 (2002)
- 3) N. Tsumura, N. Ojima, K. Sato, M. Shiraishi, H. Shimizu, H. Nabeshima, S. Akazaki, K. Hori, Y. Miyake, ACM Trans. Graph., 22, 770–779 (2003)
- 4) Y. Sakazaki, Y. Suzuki, K. Nishikata, K. Mohri, J. Soc. Cosmet. Chem. Jpn., 40, 278–286 (2006)
- 5) Y. Sakazaki, Y. Suzuki, K. Nishikata, K. Mohri, J. Soc. Cosmet. Chem. Jpn., 40, 287–294 (2006)
- 6) H. Yoshikawa, K. Kikuchi, H. Yaguchi, Y. Mizokami, S. Takata, Color Res. Appl., 37, 281–291 (2012)
- 7) JIS Z9110:2010.
- 8) ISO 8995:2002.